Apostol Bernoulli-Fibonacci Polynomials, Apostol Euler-Fibonacci Polynomials and Their Generating Functions

نویسندگان

چکیده

In this article, the Apostol Bernoulli-Fibonacci polynomials are defined and various properties of obtained. Furthermore, Euler-Fibonacci numbers found. addition, harmonic-based F exponential generating functions for numbers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials

We analyze the asymptotic behavior of the Apostol-Bernoulli polynomials Bn(x;λ) in detail. The starting point is their Fourier series on [0, 1] which, it is shown, remains valid as an asymptotic expansion over compact subsets of the complex plane. This is used to determine explicit estimates on the constants in the approximation, and also to analyze oscillatory phenomena which arise in certain ...

متن کامل

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials

The main object of this paper is to investigate the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials. We first establish two relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials. It can be found that many results obtained before are special cases of these two relationships. Moreover, we have a study on the sums of products of the Apostol-Bernoulli...

متن کامل

Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials

We find Fourier expansions of Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. We give a very simple proof of them.

متن کامل

Padé Approximation and Apostol-Bernoulli and -Euler Polynomials

Using the Padé approximation of the exponential function, we obtain recurrence relations between Apostol-Bernoulli and between Apostol-Euler polynomials. As applications, we derive some new lacunary recurrence relations for Bernoulli and Euler polynomials with gap of length 4 and lacunary relations for Bernoulli and Euler numbers with gap of length 6.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Turkish journal of mathematics & computer science

سال: 2023

ISSN: ['2148-1830']

DOI: https://doi.org/10.47000/tjmcs.1242781